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PREFACE

This proceeding contains the papers presented at the 1991
Army Symposium on Solid Mechanies, held at Plymouth,
Massachusetts, November 4 - 7, 1991. It was the twelfth in a
series of biennial symposia with focus on solid mechanies
research achievements which impact defense system needs. The
symposia series which dates back to 1966 has been sponsored by
the Army Materials Technology Laboratory in its role as the US
Army lead laboratory for solid Mechanies research and exploratory
development.

Each symposium has its theme which emphasizes a particular
subject of interest. The theme of 1991 symposium is "Synergism
of Mechanics, Mathematics and Materials!® The need to interact
among these three disciplines are well known, and the derived
benefits have long been demonstrated. The symposium is organized
into seven technical sessions covering subjects from basic
research to applications. Many papers amplify the importance and
benefits of synergism among the three disciplines. These papers
have been subjected to the usual review process and revisions, if
any required.

The Symposium Chairman wishes to thank Dr. Gordon A.
Bruggerman, Acting Director of MTL and Dr. George H. Bishop, Jr.
Director of Materials Reliability Division of MTL for their
support and encouragement required to take on the task of running

the Symposium. I want to thank the members of The




Technical Program Committee particulér to Dr. Julian Wu of The
Army Research office and Professor Thomas C.T. Ting of University
of Illinois at Chicago, for many of the ideas for the symposium
and for putting together the individual sessions. I wish to
acknowledge Miss Karen Kaloostian, MTL Conference Coordinator for
the arrangements before and during the Symposium. Universal
Technolegy Corporation, the Symposium Administrator's effort for
assembling the programs, abstracts and the proceedings for

publication should be acknowledged.

Watertown, Massachusetts

SHUN-CHIN CHOU
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SYNERGISM OF MECHANICS, MATHEMATICS AND
ANISOTROPIC ELASTIC MATERIALS

T. C. T. Ting

Department of Civil Engineering, Mechanics and Metallurgy,
University of Illinois at Chicago, Box 4348, Chicago, IL 60680

INTRODUCTION

Anisotropic elastic materials are interesting materials. A simple
tensile stress applied to the material produces not only an extensional
strain but also a shear strain. Likewise, a pure shear stress applied to
the material produces a shear strain and an extensional (or compression)
strain. Therefore a loading which is symmetric (or antisymmetric) with
the xo—axis, say, in general does not produce a deformation which is
symmetric (or antisymmetric) with the x;—axis. There are surprises in
which anisotropic materials behave like isotropic materials. These will
be pointed out in the paper.

In contrast to isotropic elastic materials which have two elastic
constants, anisotropic elastic materials may have as many as twenty one
elastic constants. When two—dimensional deformations are considered,
the analysis still requires fifteen elastic constants. In view of this, there
is a wide spread and justifiable misconception that the analysis of
anisotropic elastic materials is much more complicated than that of
isotropic elastic materials. This is not necessarily true if one employs
the Stroh formalism. With the Stroh formalism the solutions to
anisotropic elasticity problems are in most cases simpler than those for
isotropic elasticity problems. The reason is simply that isotropic
materials are more than a special case of anisotropic materials. They are
mathematically degenerate materials.

Much progress has been made since Stroh’s two pioneering
papers appeared in 1958 and 1962 [1,2]. We will point out in the paper
the integral formalism of Barnett—Lothe [3] which allows us to compute
three Barnett—Lothe tensors S, H and L, which are real, without finding
the Stroh eigenvalues p and the associated eigenvectors a, b, which are
complex. We will also point out some identities which enable us to
convert certain combinations of p, a and b to S, H, L. and other real
quantities. Owing to these identities, several existing complex form
solutions are simplified to real form solutions and solutions are obtained
for some heretofore unsolved problems. As a result, many physically
interesting and unexpected phenomena, which have been shrouded in the
complex form solutions, have been discovered recently. Most of the
unexpected phenomena defy an intuitive explanation.
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The Stroh formalism is not only maihematically elegant and
technically powerful, but some of its mathematical quantities such as the
eigenvalues p and the eigenvectors a and b have physical meanings. The
mathematical structure of S, H and L provides us a rare insight into the
relations between anisotropic and isotropic materials.

For isotopic materials the in—plane displacement and the
antiplane displacement are uncoupled. The in—plane displacement (u;,
up) and the associated surface traction vector on any boundary I' are
polarized on the (x;, x;) plane while the antiplane displacement uz and
the associated surface traction are polarized along the x3 axis. For
general anisotropic materials under the assumption of two—dimensional
deformations, the us component is in general non—zero and cannot be
uncoupled from the in—plane displacements uy, us. This does not mean
that there are no planes or axes on which the displacement and the
surface traction are polarized. There are, as we will show, oblique planes
and axes on which the displacement and the surface traction are
polarized.

The synergism of mathematics and mechanics appears to work
very well for anisotropic elastic materials. Examples presented in the
paper illustrate that this is indeed the case.

1. THE STROH FORMALISM. In a fixed rectangular coordinate
system x; (i = 1, 2, 3) let uj, o3; be, respectively, the displacement and
stress in an anisotropic elastic material. The stress strain laws and the
equations of equilibrium are

% = Cijksk,s - (1.1)
Ciksk,sj = (1.2)

where a comma stands for differentiation, repeated indices imply
summation and Cjjxs are the elasticity constants which are assumed to
possess the symmetry property

C C C

ijks = Cjiks = Cijsk = Cksij -
For two—dimensional deformations in which u; (i = 1, 2, 3) depends on
X1, X3 only, a general solution to (1.2) is, in matrix notation,

u=af(z), z= x; + DXy (1.3)
In the above f is an arbitrary function of z, and p and a are determined
by inserting (1.3) into (1.2). We have

18



{Q+p(R+RT

where the superscript T denotes the transpose and Q, R, T are 3x3 real
matrices whose components are

)+ p°T}a=0 (1.4)

Qix = Ciixr Rix = Ciiker Tik = Cioko: (1.5)

We note that Q and T are symmetric and, subject to the positiveness of
strain energy, positive definite. The stresses obtained by substituting
(1.3) into (1.1) can be written in terms of the stress function ¢ as

51 =49 %G2=91 (1.6)

in which
¢ =bi(z), (1.7)
b=(R" +pT)a=-Q+pR)a (1.8)

The second equality in (1.8) follows from (1.4). It suffices therefore to

consider the stress function ¢ because the stresses oij can be obtained by
differentiation.

There are six eigenvalues p and six eigenvectors a from (1.4).
Since p cannot be real if the strain energy is positive [4], there are three
pairs of complex conjugates for p. If p o % Py (a =1, 2,..,6) are the

eigenvalues and the associated eigenvectors we let

P =a, b

Im Py >0, po:+3 =Py ao:+3 ~ %o

at3 = ba’ (1.9)

(e = 1, 2, 3), where Im stands for the imaginary part, the overbar
denotes the complex conjugate and b is related to a  through (1.8).

Assuming that the p, are distinct, the general solutions for u and ¢
obtained by superposing six solutions of the form (1.3) and (1.7) are

3
u= E{aafa(za) + Eafa+3(za)},
o=1 (1.10)

3
¢= Z{bafa(za) + Faf01+3(201)}'
o=1

In (1.10) £, fs,..., fg are arbitrary functions of their argument and
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Z,= X + P Xo:

The above formalism is due to Stroh [1,2]. In applications all we
have to determine is the form of the arbitrary functions f o What

distinguishes the Stroh formalism from others is that there are relations
between a , and b o which allow us to find the solution easily and/or to

simplify the solution obtained. These relations and the Barnett—Lothe
integral formalism are presented next.

In closing this section we note that, in most applications, fa has
the same function form so that we may write

fa(za) = qaf(za)’
fors(Ze) =9,f(E,), @=1,2,3,
where q, are arbitrary constants. The second equation is for obtaining

real solutions for u and ¢. Equations (1.10) can then be written as

3 3

u=2 ReZa.aqaf(za), $=2 ReZbaqaf(za). (1.11)
a=1 a=1

2. THE BARNETT-LOTHE TENSORS. The two équations in (1.8)
can be rewritten as

SR IR IR

where I is tlie 3x3 identity matrix. Multiplying both sides by the matrix

1 o
—RT 1
leads to the standard eigenrelation [5,6]
N¢ = p¢, (2.1)
N, N a
N=| 1 A e=|], (2.2)
N, Nj b
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1T
N1 =-T "R7, N2 3
It is clear that N; and N3 are symmetric and N; is positive definite. It
can be shown that —Nj is positive semi—definite [7]. Moreover, —N; and
—Nj have the structure .

=17}, N,=RTRT —q. (2.3)

* 1 * * 0 *
—N;=|* 0 *|, -N;=|[0 0 0], (2.4)
* 0 * * 0 *

in which the * denotes a possibly non—zero element. These * elements
have surprisingly simple expressions in terms of elastic compliances [7].
The structure of Ny, N3 shown in (2.4) plays important roles in solving
problems and interpreting the final solutions.

The vector £ = (a, b) in 82.2) is the right eigenvector of N. It
can be shown that (b, a) is the left eigenvector. The left and right

eigenvectors associated with different eigenvalues are orthogonal to each
other. The orthogonality relations can be normalized such that

aa'bﬂ + ba-aﬁ = 5aﬂ (2.5)

where 6aﬂ is the Kronecker delta. Introducing the 3x3 matrices A and B
by

A= [31: ), a3]’ B= [bl’ b2: b3]; (2.6)

and employing (1.9), the orthogonality relations (2.5) take the form

I 0
- [ ] 21)
0 I

The two 6x6 matrices on the left are the inverses of each other and their
product can be interchanged. The interchanged product is

BT ATy 1A &

TKT

B B B

ABT + ABT = 1= AT + BAT,
(2.8)
AAT + ZAT = 0= BT + BBT.
Equations (2.8) tell us that the real part of ABT s I/2 and that
AATa,nd BBT are purely imaginary. Hence the three matrices S, H, L,
defined by

S=i(2ABT —1), H=2AAT, L = 2BB, (2.9)
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are real. It is clear that H and L are symmetric. It can be shown that
they are positive definite, the products

sH, LS, H s, sL™!
are antisymmetric, and the relation

HL-SS =1 (2.10)
holds [3,6].

The formulation presented so far assumes that the eigenvalues p
are distinct. If p; = ps, say, and a; = a,, the solution (1.10) is not
general. The matrices A and B would be singular and the orthogonality
relation (2.7) is not valid. Anisotropic materials for which p; = p; and
a; = a, are called degenerate materials. They are degenerate in the
mathematical sense, not necessarily in the physical sense. Isotropic
materials are a special case of degenerate materials for which py = p2 =
p; =i and a; = a; # a;. In many applications however the final solution
depends only on the three real matrices S, H, L defined in (2.9). Barnett
and Lothe [3] devised an integral formalism of these three real matrices
which circumvented the need of determining the eigenvalues and the
eigenvectors. Thus the problem of degenerate materials disappears. The
integral formalism is as follows. Define the three real matrices

Qu(0) = Cijksnjns’ Ry (0) = Cijksnjms’ Ty (0) = Cijksmjms, (2.11)
in which #is a real parameter and
n; = [cos, sinf, 0], m, = [-sinf, cosf, 0].

Equations (2.11) reduce to (1.5) when # = 0. Next consider the
incomplete integrals

9 0
f No(w)dw,
0

A
=
I
3=
%
2
—
E
joN
S
==}
——
=
I
Sy

(2.12)

L(6) = %j ~Ny(w)dw,
0
where

Ny(0) =T (OR' (), No()= T7(0),

N,(6) = R(OT ()R (6) - Q(0).
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Ni(0) reduce to Nj in (2.3) when § = 0. When 6 = 7 we have the
complete integrals S(r), H(7), L(r). Barnett and Lothe proved that S,
H, L of (2.9) are identical to the complete integrals, i.e.,

S =S(r), H=H(7), L=L(n). (2.13)
Thus S, H, L are called the Barnett—Lothe tensors and S(4), Hgﬂ), L(6
the associated tensors. In the sequel, dependence of S(4), H(6), L(4
on 6 will be given explicitly unless § = x, and dependence of N(6) on §
will be given explicitly unless § = 0.

As we see from the integrals in (2.12), there is no need to
determine the eigenvalues p and the associated eigenvectors a and b.
This is a remarkable result which has been widely used in the analysis of
anisotropic elasticity. It should be pointed out that there are cases in
which the final solution cannot be presented entirely in terms of
Barnett—Lothe tensors and their associated tensors. In that case we
have to modify the general solution (1.10) for degenerate materials [8,9].

For isotropic elastic materials use of (2.12) leads to

1-52
0 -1 0 = 00 kK 0 0
S=s100,H=l1701%20,L=p0n0,(2.14)
0 0 0 0 0 1 0 01
where p is the shear modulus,
. 1 s — 1-2v
1w 7T 200w)

and v is the Poisson ratio. For general anisotropic materials the
structure of S, H, L is more complicated. For orthotropic materials and
for monoclinic materials with the plane of symmetry at x; = 0, explicit
expressions of S, H, L are obtained in [10,11]. We will show later that, if
a proper oblique coordinate system is chosen as the natural base of the
tensors S, H, L, the tensor components Si;, Hii and Lj; for general
anisotropic materials have the exact expressions as that shown in (2.14)
for isotropic materials.

3. PHYSICAL MEANINGS OF THE EIGENVECTORS a AND b. Let
a’, a" be the real and imaginary parts of a,

a=a +ia".
A complex vector is also called a bivector [12,13]. The real vectors a’
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and a" span a plane. If & is obtained by multiplying a by a complex
factor elw where 9 is real,

in which

a’ = a’cosy — a"siny, (31)
3.1

a" = a’singy + a"cosy.

Thus the real and imaginary parts of a lie on the plane spanned by a’
and a". Therefore the plane is called the polarization plane of a, or
simply the plane a, which is invariant with the multiplication factor on

a. As 9 varies (3.1) show that a’ and a" trace an ellipse. A pair of
diameters in an ellipse is said to be conjugate if all chords parallel to one
diameter are bisected by the other diameter. Therefore the tangent at
the extremity of one diameter is parallel to the other diameter. It can be

shown that a’ and 2" form a pair of conjugate radii. One could choose a

9 such that a’ and a" are orthogonal and hence are the principal radii of
the ellipse [14].

It is clear that the bivector a and its complex conjugate a
define the same polarization plane.

Consider now the solution (1.3). The displacement u is a
bivector a multiplied by f(z). Regardless of the position (x;, x3), f(z) is a

complex factor of the form pe”p where p is real. Whether we take the
real or imaginary part of a f(z), u is polarized on the plane a for all
(xy, x3). Likewise, the stress function ¢ of (1.7) is polarized on the
plane b. If b is the surface traction vector on a curved boundary T', it

can be shown from (1.6) that

tp = g% (3.2)

where 7 is the arclength of I' measured in the direction such that the
material is located on the right hand side of I'. Equations (1.6); and
(1.6), are special cases of (3.2) when T' is the surface x; = constant and
x; = constant, respectively. Since ¢ is polarized on the plane b, (3.2)
tells us that the surface traction th is polarized on the plane b.

The general solution (1.10) or (1.11) implies that there are three
polarization planes a;, a; a3 for the displacement u and three
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polarization planes bj, by, by for the surface traction th For monoclinic

materials with the plane of symmetry at x3 = 0, a;, aj, by, by all define
the same plane, namely, the (x;, x2) plane. As to a; and by, their real
and imaginary parts are parallel. The polarization planes degenerate
into lines parallel to the xs—axis. The displacement associated with a3
and the surface traction tF associated with by are in the x; direction.

In summary, there are three independent (or three
one—component) solutions for general anisotropic materials.  The
displacement of a one—component solution is polarized on the plane a
while the surface traction on any boundary is polarized on the plane b.
To satisfy a prescribed boundary condition, all three one—component
solutions are in general needed. In surface waves, there are
one—component surface waves [15, 16] and two—component surface waves
[17, 18]. For Green’s functions for the infinite space due to a line force
and a line dislocation, there are one—component Green’s functions. The
latter will be discussed in Section 5.

4. THE S TENSOR. Of the three Barnett—Lothe tensors, the tensor S
is the most interesting one. By writing S as
s = L7Y(LS), (4.1)

S is the product of the symmetric positive definite tensor L"1 and the
antisymmetric tensor LS. It has the property that

trS=0, detS=0.

Therefore the eigenvalues of S are 0 and =is where
1 2y11/2
§ = {—gtr (S )} /2 (4.2)

Denoting the associated eigenvectors by e; and ejxie; where ey, e, e3
are real, we have

S(etie;) = 7is(esxies), Sez = 0. (4.3)

Thus e; is the right null vector of S and ejtie; are the right

eigenvectors. The new right eigenvectors €;xié; obtained by
multiplying es*ie; by a complex factor span the same plane as egie;.
Therefore the plane spanned by (ey, e;) is called the right eigenplane.

Let e, e2, e3 be the reciprocal of e;, e, e3 so that

ei-ej = §ij. (4.4)
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Consider the following tensor components of S, H, L :
S=Sije;eel, H=Hije;j®e;, L=Ljeisel. (4.5)

Using (2.10) and the fact that SH, LS are antisymmetric, the matrices
formed by Si;, Hii, Lij can be shown to have the structure given in (2.14)
where s, p, £ are now independent constants [19]. Thus as far as the
Barnett—Lothe tensors are concerned, anisotropic materials are identical
to isotropic materials if we choose an oblique coordinate system
represented by e;, e;, e;. For isotropic materials e;, e;, e; are unit
vectors in the direction of the xj, xs, x3 axis, respectively.

It should be pointed out that (e!, e?) and e3 are, respectively,
the left eigenplane and the left null vector of S. Do ej, ei have physical
interpretations? They do. They are explained in the next Section.

5. GREEN'S FUNCTIONS FOR LINE FORCES AND LINE
DISLOCATIONS IN THE INFINITE SPACE. There are several
interesting properties associated with Green’s functions for the infinite
space due to a line force f and a line dislocation with Burgers vector b
applied along the x3 axis. The basic solution is obtained from (1.11) by
choosing the function f(z a) such that

3 3
1 1
u=_ ImZaaqaln z, $=7 ImZbaqaln Z, (5.1)
a=1 a=1

Since 1n Z,, is a multi—valued function we introduce a cut along the
negative x;—axis. In the polar coordinate system

x; =r1cosf, X, =rsind, (5.2)
the solution (5.1) applies to

—-T<f<m 1>0.
Therefore
lnzazlnriivr at §==z7, fora=1,2, 3. (5.3)

Equations (5.1) represent three one—component Green’s
functions. For each a, u is polarized on the plane a, and the surface
traction tn is polarized on the plane ba‘ The discontinuities in u and ¢

across § = +1 are, respectively, the line dislocation b“ and the line force
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£ for the one—component Green’s function. Hence by (5.3),
a_ a_ '

which show that % is on the plane a, and f%is on the plane b o We
therefore have the result that the one—component Green’s function has u
and b“ polarized on the plane a a and has f% and the surface traction tn
polarized on the plane ba'

To obtain a one—component Green’s function we may assume an
arbitrary complex constant Q, Equations (5.4) then provide b* and f
required for the one—component Green’s function. Alternately we may
prescribe an f ¢ which lies on the plane b o Equation (5.4); can be

solved for q , and (5.4); gives the associated b®. To solve (5.4), for 1,
let the real and imaginary parts of ba and q a be written as

— shit — gy ||
ba" b&+1ba’ 9 = qc’x +lqa‘
We then have
o _ R N BN 1
f7=2(b)q’ —bray)
from which qQ, and qgl can be determined.

When f and b are prescribed arbitrarily, we need all three
one—component Green’s functions for the solution. Making use of (2.6),
(5.1) are rewritten as

u= %Im{A<ln z>q}, ¢= -}?Im{B<ln z>q}, (5.5)
in which

T
q = [Qh q2, Q3]
and

<In z> = diag[ln 2, In z,, In z3]
is a diagonal matrix. Equations (5.5) must satisfy the conditions
u(m) —u(—m) = b,

¢(m) —4(=m) = £
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which lead to
2Re(Aq)=b, 2Re(Bq)=f (5.6)

This can be written as

A q b
5|k~ Lt
It follows from (2.7) that
q BT AT b
H R U]
Hence
q=ATr+ BT, (5.72)
or
q, =3, f+b, b (5.7b)

Inserting (5.7b) into (5.4) gives us 6% and f%in terms of band f

We show next that the solution (5.5) together with (5.7a) can be
rewritten into a real form. Equations (2.9) are identities which convert
certain combinations of complex quantities involving A, B to real
quantities S, H and L. The following identities are useful for problems
related to line forces and line dislocations [20].

9 A<ln z>AT = —i[(In 1)I + 7S(O)]H + 7H(H)[I—iST],

2 B<ln z>AT = [(In 1) + 7S L(9)|[1—iS Y] + inL(6),
(5.8)

9 A<ln z>BT = [(In 1)I + 7S(6)][I —iS] + i7H(6)L,
9 B<In z>BT = i[(In 1)L + 7S (6)]L — 7L(6)[I — iS].

These identities allow us to convert the complex expressions on the left
to real quantities shown on the right which are obtainable directly in
terms of elasticity constants through (2.12) and (2.13). With the
identities (5.8), the solution (5.5) together with (5.7a) is converted into a
real form as
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ou = —% (In r)h — S(O)h + H()g,

20= 1 (lnr)g + L(Oh + ST(0)g, 59)

where

g=Lb—STf h=Sb+Hf (5.10)

From (3.2), the surface traction t g on any radial plane ¢ = constant is in

the direction of g which is invariant with the choice of the radial plane.
The infinite displacement ug at r = 0 is in the direction of h. Moreover,
the relation [14]

g-h: f-b

is easily established using (2.10) and the anti—symmetric property of LS
and SH.

We now present physical interpretations of e; and ei. Using
(4.5) and the discussions following (5.10), (5.10) can be written as

2rrty = g = [Lyj(el- b) — Sis(ej- f)]ed,
—2x(In 1) Lue = h = [Si;(ei- b) + Hii(ej- f)]es.

With the structure of Sij, Hij, Lj; shown in (2.14) and using (4.4), it can
be shown that if bis along e; and f is along e3, ug is in the direction of e;
and t g in the direction of e3. On the other hand, if b is on the right

eigenplane (e, ;) and f is on the left eigenplane (e!, e2), u, is polarized
on the right eigenplane and t 0 is polarized on the left eigenplane. More

relations between ey, e;, et,e? and b and f can be found in [14].

6. BIMATERIALS AND INTERFACE CRACKS. Let § = 6, be the
interface between two materials in the bimaterial. The half—space 6 <
6 < Bo+7 is occupied by material 1 and the other half—space fy—1 < 0 <
6y is occupied by material 2. They are rigidly bonded together along § =
0. For a line force f and a line dislocation b applied at the origin r = 0,
(5.9) is a basic solution which applies to both materials. We may add
constant terms to the right hand sides of (5.9) which produce a rigid
body displacement but no stresses. Therefore consider the solution

2 uy(r,) = — 7{In 1)h = [S,(6)-S(8o)]h + [Hy(6)Hs(0o)lg,

(6.1)
24,(r,0) = = (In 1)g + [Li(O)-L(60)]h +[ST()-ST(00)g,
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for material 1 in 8y < 8 < 6y+7. The subscript 1 denotes material 1.
The solution for material 2 is obtained from (6.1) by replacing the
subscript 1 by 2 while keeping the same constants g and h. It is readily
shown that the continuity of u and ¢ at § = 6 is automatically satisfied.
The discontinuity in u and ¢ across 6 = 6, + 7, which should be equal to
b and f, respectively, leads to two equations for g and h which are
independent of §, [21]. Therefore, the stresses obtained by substituting
¢; of (6.1) and similar equation for ¢, into (1.6) are independent of the
location 6y of the interface ! This unexpected phenomenon defies an
intuitive explanation even for isotropic bimaterials.

One of the most studied problems in anisotropic elasticity is the
problem of interface cracks in bimaterials [22—33]. Let x; > 0 be
occupied by material 1 and x; < 0 be occupied by material 2. The
interface crack of length 2a is located at

x3=0, |x4] <oa.

The bimaterial is subject to a uniform traction tr and —tp at the crack
surfaces x; = +0 and -0, respectively. The stress singularities near a

tip of the interface crack is proportional to r5 where 1 is the radial
distance from the crack tip and 6 is a constant depending on the material
property of the bimaterial. It is shown in [24] that there are three
singularities given by

1 1. 1 .
§=-5 —5+ir, and —5—iy,

where
1 1 1 -1
7=ﬁln—1—_-_l-j§=%tanh ﬁ,
.9 1/2
= [——-2—tr(S )] <1 (6.2)
In the above
§=D'w, (6.3)
_¢-1 -1 _ -1 -1
D_L1 +L2, W—SlL1 S2L2,

in which D is symmetric, positive definite and W is anti—symmetric.

Thus S has the same properties as the S tensor. The eigenvalues of S are
7if and 0 and the associated right eigenvectors are denoted by did; and
d;, respectively. The left eigenvectors can be shown to be D(drids) and
Dd, [34]. Hence do, Dd, are, respectively, the right and left null vectors
while the planes spanned by (d;, d;) and (Dd;, Ddy) are the right and left
eigenplanes.
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The two materials in the bimaterial are said to be mismatched
when W # 0. W = 0 if and only if # = 0 (and hence y = 0) [24, 25].
For mismatched bimaterials (v # 0), the displacement at the crac
surface is oscillatory. = This leads to the physically unacceptable
interpenetration of the crack surfaces.

When # = 0 the solution in materials 1 and 2 both have the
expression

u = Re {A<i(z)>B ™ }tp, 64
b = Re {B<i(z)>B ™},

f(z) = y z%—a®—z.

Of course A, B and z in material 1 and material 2 would be different.
There is no oscillation in displacement and the stress has the square root
singularities.

in which

The following results are taken from [34]. When 4 # 0, the
solution is still given by (6.4) if the applied traction tpis the null vector

of W, ie.,if

WtI‘ =0,
or, by (6.3),
Stp=0.

Thus when the applied traction is in the direction of the right null vector
d,, there is no oscillation in displacement. The crack surface opening

Au = u(xy, +0) —u(xy, 0), |xi1] < g,

is in the direction of the left null vector Ddy and the surface traction on
the surface x; = 0 outside the crack is in the direction of the right null
vector d,.

If the applied traction is not in the direction of d,, we
decompose it into two components. One is along the right null vector d,
and the other is on the right eigenplane (d;, d;). Explicit solutions
associated with the one on the right eigenplane can be found in [34] in
which the displacement is oscillatory. It suffices to mention that the

crack surface opening au lies on the left eigenplane of S while the surface
traction along the surface x, = 0 lies on the right eigenplane of S.
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DISCUSSION

We have shown that, in many respects, anisotropic elastic
materials have properties which are similar to, or generalization of, the
properties of isotropic materials. Analogous to the antiplane
deformations of isotropic materials, anisotropic materials have
deformations which are polarized in one direction while the surface
traction vector on any boundary is polarized on a different direction.
Similar to the in—plane deformations of isotropic materials, anisotropic
materials can have deformations which are polarized on one oblique
plane while the surface traction vector on any boundary is polarized on
another oblique plane.

Simple problems for which we thought we have understood them
thoroughly still yield new information due to the simplification of the
solutions by the Stroh formalism. For example, consider the Griffith
crack of length 2a located at x; = 0, |x;| < a in the infinite anisotropic
elastic medium. When the traction applied at the crack surfaces is in
the direction of the x; axis, the crack opening is in general not
symmetric with the x, axis as expected. However, the x; axis outside the
crack remains a straight line ?' €., the u; component of the displacement
along the x; axis vanishes). If the traction applied at the crack surface is

the null vector of SL—l, all three displacement components along the x;
axis vanish. If the applied traction is in the direction of the vector
formed from the second column of L, the hoop stress vector along the
crack surface is independent of x, [21].

Other interesting properties worth mentioning are the physical
implications of the eigenvalues p. For the Green’s functions for a
half—space subject to a singularity in the form of line forces and line
dislocations, the solution can be obtained by a superposition of the
Green’s function due to the same singularity for the infinite space and
several image singularities located outside of the space occupied by the
material. The locations of the image singularities are determined
exclusively by the eigenvalues p. Moreover, the locations of the image
singularities are independent of the nature of the singularities concerned
[35?. If the singularities are line forces and line dislocations, the image
singularities are also line forces and line dislocations. For degenerate
materials for which isotropic materials are a special case, two or more of
the image singularities coalesce into one singularity, creating a new
singularity in the form of a double force, a concentrated couple, and/or a
higher order singularity which are well known for isotropic materials [36]
but have not been satisfactorily explained in the past.
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1. Introduction

There are multiphase processes that are essentially isothermal with
kinetics driven by mass transport and stress, an example being coarsen-
ing or Ostwald ripening, in which a phase, quenched into a metastable
state, exhibits late-stage kinetics characterized by the dissolution of
second-phase domains with large interfacial curvature at the expense of
domains with low interfacial curvature. In [1] we developed a continuum-
mechanical framework within which such processes can be discussed. We
here discuss the results of [1].

We consider a two-phase system consisting of bulk regions separated
by a sharp interface endowed with energy and capable of supporting
force, following — and in certain respects generalizing — the framework
set out in [2-5]. We base our discussion on balance laws for mass and
force in conjunction with a version of the second law appropriate to a
mechanical system out of equilibrium. We assume that mass transport
is characterized by the bulk diffusion of a single independent species; we
neglect mass diffusion within the interface.

2. Theory without deformation.

We neglect deformation and bulk stress, but allow the diffusion po-
tential (chemical potential) to be discontinuous across the interface. We
develop a heirarchy of free-boundary problems at various levels of ap-
proximation, framed in terms of the departure u = g — o  of the
diffusion potential p  from the transition g, whichis the poten-
tial at which the phase change would occur were interfacial structure ne-
glected. For small departures from po the basic system of equations,
neglecting diffusional transients, consists of a PDE in bulk supplemented
by three interface conditions. The PDE has the form

divh =0, )
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where h, the mass flux, is given by

h